63 research outputs found

    On Complexity, Energy- and Implementation-Efficiency of Channel Decoders

    Full text link
    Future wireless communication systems require efficient and flexible baseband receivers. Meaningful efficiency metrics are key for design space exploration to quantify the algorithmic and the implementation complexity of a receiver. Most of the current established efficiency metrics are based on counting operations, thus neglecting important issues like data and storage complexity. In this paper we introduce suitable energy and area efficiency metrics which resolve the afore-mentioned disadvantages. These are decoded information bit per energy and throughput per area unit. Efficiency metrics are assessed by various implementations of turbo decoders, LDPC decoders and convolutional decoders. New exploration methodologies are presented, which permit an appropriate benchmarking of implementation efficiency, communications performance, and flexibility trade-offs. These exploration methodologies are based on efficiency trajectories rather than a single snapshot metric as done in state-of-the-art approaches.Comment: Submitted to IEEE Transactions on Communication

    Flexible radio design: trends and challenges in digital baseband implementation

    Get PDF
    International audience; Fourth-generation communications systems call for a high amount of computational power due to multiantenna and multimode features. The level of flexibility required is growing rapidly with the number of modes to be supported for a single protocol and the number of protocols to be supported by a single receiver. Such high level of flexibility becomes a key feature of new and legacy radio applications in many domains (military radio, broadcast systems, aeronautic communications, etc.), which call for adopting a software-defined radio (SDR) approach, or even for incorporating additional adaptive capabilities, such as suggested by cognitive radio (CR) research. In general, the design of flexible base-band platforms raises several critical problems, including the high level of required performance, the dissipated power, and the reconfiguration process itself. Several alternatives have been partially explored to implement flexible base-band building blocks and a lot of research is still required to bring efficiency into programmable platforms

    Sagittal wedging of intervertebral discs and vertebral bodies in the cervical spine and their associations with age, sex and cervical lordosis: A large-scale morphological study

    Get PDF
    AbstractMany recent studies have focused on the functional and clinical importance of cervical lordosis. However, there is little accurate knowledge of the anatomical parameters that constitute cervical lordosis (i.e., the sagittal wedging angles of intervertebral discs and vertebral bodies) and their associations with age and sex. Standing lateral cervical radiographs of 1020 subjects (424 males, 596 females) with a mean age of 36.6 ± 17.0 years (range 7–95 years) were evaluated retrospectively. Cervical lordosis, the sum of intervertebral disc wedging angles from C2/C3 to C6/C7 and the sum of vertebral body wedging angles from C3 to C7 were measured. The sum of intervertebral disc wedging and the sum of vertebral body wedging were 20.6° ± 14.7° and −12.8° ± 10.3°, respectively. The sum of intervertebral disc wedging increased significantly with age and was significantly greater in males than females, whereas there was no sex‐related difference in the sum of vertebral body wedging. The sum of intervertebral disc wedging was negatively correlated with sum of vertebral body wedging. Wedging of discs contributed to C2–C7 cervical lordosis more significantly than wedging of vertebral bodies. There were moderate positive correlations between cervical lordosis and intervertebral disc wedging angles at C3/C4, C4/C5 and C5/C6; weak correlations were observed at C2/C3 and C6/C7. This study constitutes the largest currently available analysis comprehensively documenting the anatomical characteristics of sagittal wedging of intervertebral discs and vertebral bodies in the cervical spine. The findings could improve understanding of the internal architecture of cervical lordosis among clinicians

    The therapeutic effect of clinical trials: understanding placebo response rates in clinical trials – A secondary analysis

    Get PDF
    BACKGROUND AND PURPOSE: Placebo response rates in clinical trials vary considerably and are observed frequently. For new drugs it can be difficult to prove effectiveness superior to placebo. It is unclear what contributes to improvement in the placebo groups. We wanted to clarify, what elements of clinical trials determine placebo variability. METHODS: We analysed a representative sample of 141 published long-term trials (randomized, double-blind, placebo-controlled; duration > 12 weeks) to find out what study characteristics predict placebo response rates in various diseases. Correlational and regression analyses with study characteristics and placebo response rates were carried out. RESULTS: We found a high and significant correlation between placebo and treatment response rate across diseases (r = .78; p < .001). A multiple regression model explained 79% of the variance in placebo variability (F = 59.7; p < 0.0001). Significant predictors are, among others, the duration of the study (beta = .31), the quality of the study (beta = .18), the fact whether a study is a prevention trial (beta = .44), whether dropouts have been documented (beta = -.20), or whether additional treatments have been documented (beta = -.17). Healing rates with placebo are lower in the following diagnoses; neoplasms (beta = -.21), nervous diseases (beta = -.10), substance abuse (beta = -.14). Without prevention trials the amount of variance explained is 42%. CONCLUSION: Medication response rates and placebo response rates in clinical trials are highly correlated. Trial characteristics can explain some portion of the variance in placebo healing rates in RCTs. Placebo response in trials is only partially due to methodological artefacts and only partially dependent on the diagnoses treated

    Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    Get PDF
    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2

    Architectures for baseband signal processing

    No full text
    This book addresses challenges faced by both the algorithm designer and the chip designer, who need to deal with the ongoing increase of algorithmic complexity and required data throughput for today's mobile applications. The focus is on implementation aspects and implementation constraints of individual components that are needed in transceivers for current standards, such as UMTS, LTE, WiMAX and DVB-S2. The application domain is the so called outer receiver, which comprises the channel coding, interleaving stages, modulator, and multiple antenna transmission. Throughout the book, the focus

    100% Green Computing At The Wrong Location?

    Get PDF
    Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efficiency. The key enabler for this evolution is the microelectronics industry. The trend to power efficient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry
    corecore